144 research outputs found

    Mapping genes through the use of linkage disequilibrium generated by genetic drift: 'Drift mapping' in small populations with no demographic expansion

    Get PDF
    Linkage disequilibrium has been a powerful tool in identifying rare disease alleles in human populations. To date, most research has been directed to isolated populations which have undergone a bottleneck followed by rapid exponential expansion. While this strategy works well for rare diseases in which all disease alleles in the population today are clonal copies of some common ancestral allele, for common disease genes with substantial allelic heterogeneity, this approach is not predicted to work. In this paper, we describe the dynamics of linkage disequilibrium in populations which have not undergone a demographic expansion. In these populations, it is shown that genetic drift creates disequilibrium over time, while in expanded populations, the disequilibrium decays with time. We propose that common disease alleles might be more efficiently identified by drift mapping - linkage disequilibrium mapping in small, old populations of constant size where the disequilibrium is the result of genetic drift, not founder effect. Theoretical models, empirical data, and simulated population models are presented as evidence for the utility of this approach

    Total Plasma Homocysteine and Depressive Symptoms in Older Hispanics

    Get PDF
    Background: Very few studies have investigated the association between total plasma homocysteine (tHcy) and depressive symptoms in older Hispanics. Objective: To test the hypothesis that high tHcy associates with depressive symptoms in older Hispanics. Methods: A total of 1,418 participants .55 years old from the Maracaibo Aging Study (MAS) underwent standardized neurological, neuropsychiatric, and cardiovascular assessments. The Neuropsychiatric Inventory Depression Subscale (NPId) was used to assess the burden of depressive symptoms. The tHcy levels and other biochemical parameters in blood samples were measured. Univariate and multivariate logistic regression models were applied. Results: Participants with depressive symptoms had higher levels of tHcy than those without (15.1 versus 13.9 ”mol/L; p = 0.009). Elevated tHcy levels were associated with depressive symptoms after adjusting for age, sex, education, smoking, diabetes, hypertension, alcohol intake, stroke, and dementia (OR = 1.58; 95% CI, 1.18-2.12). Conclusion: Elevated levels of tHcy were associated with depressive symptoms in older Hispanics living under the nutritional and environmental conditions of a developing country

    Cognitive Decline Associated with Longitudinal Changes in 24-h Ambulatory Blood Pressure Variability

    Get PDF
    Background: Cognitive decline has been associated with variability in blood pressure (BP). However, whether the increment of the BP variability during follow-up precedes cognitive decline remains undocumented. We aimed this study to investigate cognitive decline in relation to longitudinal changes in 24-h reading-to-reading BP variability. Methods: We conducted an observational longitudinal study that included 717 dementia-free participants from the Maracaibo Aging Study who underwent follow-up assessment in both 24-h ambulatory BP monitoring and cognitive tests between 1998 and 2015. Cognitive domains consisted of selective reminding tests (total, long-term, short-term, and recognition memory) and the Mini-Mental State Examination (MMSE). Cognitive decline was a longitudinal decrease in cognitive scores. Participants underwent 24-h ambulatory BP monitoring between 2-4 times – with at least one-year interval. Systolic and diastolic BP variability was studied during 24-h and divided into daytime (from 06h00 to 23h00), and nighttime (23h00 to 06h00) periods. To account for BP level, we used variability independent of the mean (VIM) to compute systolic and diastolic BP variability. Other measures of BP variability included the nocturnal BP drop in comparison to the daytime BP level, which was estimated as the night-to-day ratio. Statistics included multivariate linear regression mixed models. Results: Overall, the mean age was 65.6±7.36 years old and 66.5% (n=447) of the participants were women. In mixed models, a decline in all memory domains was associated with greater variability in the 24-h, daytime, and nighttime systolic BP during follow-up, with an estimated decline in cognitive scores ranging from -0.2 to -0.04 points per unit increase in VIM systolic BP during follow-up (P values ranged from 0.022 to 0.003). Decline in total, short-term, and MMSE memory domains was associated with greater 24-h and daytime diastolic BP variability (P≀0.015). A lower night-to-day dipping ratio during follow-up increased the risk of cognitive decline, with a -5.8 to -1.6 decline in long-term memory and MMSE scores; respectively (P≀0.037). Conclusions: Cognitive decline associates with greater reading-to-reading 24-h BP variability and lower falls in nocturnal BP over time. These findings might be indicative of deteriorated regulatory mechanisms to maintain steady BP levels as individuals age

    Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical Training, Low-Energy Availability, and Intensive Weight Loss

    Get PDF
    Exercise and exercise-induced weight loss have a beneficial effect on overall health, including positive effects on molecular pathways associated with immune function, especially in overweight individuals. The main aim of our study was to assess how energy deprivation (i.e., "semi-starvation") leading to substantial fat mass loss affects the immune system and immunosuppression in previously normal weight individuals. Thus, to address this hypothesis, we applied a high-throughput systems biology approach to better characterize potential key pathways associated with immune system modulation during intensive weight loss and subsequent weight regain. We examined 42 healthy female physique athletes (age 27.5 +/- 4.0 years, body mass index 23.4 +/- 1.7 kg/m(2)) volunteered into either a diet group (n = 25) or a control group (n = 17). For the diet group, the energy intake was reduced and exercise levels were increased to induce loss of fat mass that was subsequently regained during a recovery period. The control group was instructed to maintain their typical lifestyle, exercise levels, and energy intake at a constant level. For quantification of systems biology markers, fasting blood samples were drawn at three time points: baseline (PRE), at the end of the weight loss period (MID 21.1 +/- 3.1 weeks after PRE), and at the end of the weight regain period (POST 18.4 +/- 2.9 weeks after MID). In contrast to the control group, the diet group showed significant (false discovery ratePeer reviewe

    Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins

    Get PDF
    Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects

    Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins

    Get PDF
    Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects

    Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins

    Get PDF
    Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/ÎČ-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates
    • 

    corecore